2.3. बैल-कोलमैन चक्र (Bell-Coleman cycle) बैल-कोलमैन चक्र को परिवर्तित कॉनोंट चक्र का सुधार कर बनाया गया है। इस चक्र पर आज का प्रशीतन निकाय चल रहा है: हवा की जगह पर गैसों का प्रशीतक के रूप में प्रयोग हो रहा है। बैल-कोलमैन चक्र को भी चार भागों में बाँटा गया है- - । रुद्धोष्म संपीडन प्रक्रिया - 2. स्थिर दाब पर ठण्डा करना - 3. रुद्धोप्म प्रसार प्रक्रिया - 4. स्थिर दाब पर अवशोषण करना चित्र 2.4 - 1. रुद्धोध्य संपीडन प्रक्रिया (Isentropic compression process)—इस प्रक्रम के अन्दर हम ठण्डी हवा को इवापोरेटर से खींच कर संपीडक में ले जाकर संपीडन करते हैं। संपीडन करने में तापमान बढ़कर T_1 से T_2 व दाब बढ़कर P_1 से P_2 हो जाता है। इसके बाद आयतन V_1 से घटकर V_2 हो जाता है। इस प्रक्रम में ऊष्मा का अवशोषण व बाह्य गमन नहीं होता है। - 2. स्थिर दाब पर ठण्डा करना प्रक्रिया (Constant pressure cooling process)—इस प्रक्रिया के अन्दर दाब को स्थिर रखकर हवा की ऊष्मा को कण्डैंसर के द्वारा बाहर निकाला जाता है जिसके कारण तापमान घटकर T_2 से T_3 और आयतन V_2 से घटकर V_3 हो जाता है। इसके अन्दर ऊष्मा बाहर निकलती है जो निम्न है— $$Q_{2-3} = C_p (T_2 - T_3)$$ - 3. रुद्धोष्म प्रसार प्रक्रिया (Isentropic expansion process)—इस प्रक्रिया के अन्तर्गत हम हवा का प्रसार करते हैं जिसके कारण दाब घटकर P_3 से P_4 और तापमान T_3 से T_4 हो जाता है। इसके अन्दर आयतन बढ़कर V_3 से V_4 हो जाता है। इसके अन्तर्गत ऊप्मा का अवशोषण व निष्कासन नहीं होता है। - 4. स्थिर दाव प्रसार प्रक्रिया (Constant pressure expansion process)—उण्डी हवा को प्रसार करने के बाद इवापोरेटर से गुजारते हैं जिसके अन्दर हवा ऊष्मा का अवशोषण करती है जिसके कारण तापमान व आयतन T_4 से T_1 व V_4 से V_1 हो जाता है। हवा के द्वारा अवशोषित ऊष्मा है— $$Q_{4-1} = C_p (T_1 - T_4)$$ हम जानते हैं कि किया गया कार्य प्रति किया (हवा द्वारा) ऊष्मा निष्कासन — ऊष्मा अवशोषण $$C_p (T_2 - T_3) - C_p (T_1 - T_4)$$ ऊष्मा का अवशोषण $$\frac{\text{ऊष्मा का अवशोषण}}{\text{किया गया कार्य}}$$ $$= \frac{C_p (T_1 - T_4)}{C_p (T_2 - T_3) - C_p (T_1 - T_4)}$$ $$= \frac{C_p (T_1 - T_4)}{C_p [(T_2 - T_3) - (T_1 - T_4)]}$$ $$COP = \frac{(T_1 - T_4)}{(T_2 - T_3) - (T_1 - T_4)}$$ हम जानते हैं कि रुद्धोष्म संपीडन प्रक्रिया 1-2 में $$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{\gamma - 1}{\gamma}}$$ इसी प्रकार रुद्धोष्म प्रसार प्रक्रिया 3-4 में $$\frac{T_3}{T_4} = \left(\frac{p_3}{p_4}\right)^{\frac{\gamma - 1}{\gamma}}$$ जनकि $$p_2=p_3$$ और $p_1=p_4$ है $$\frac{T_2}{T_1}=\frac{T_3}{T_4}$$ इस प्रकार हम मान को (i) में बदल दें, तब $$COP = \frac{T_4}{T_3 - T_4} = \frac{1}{\left(\frac{T_3}{T_4} - 1\right)}$$ इसके बाद हम जानते हैं कि संपीडन व प्रसार प्रक्रिया में जिस नियम ($pv^n = { m constant}$) का पालन होता है, उस स्थिति में प्रक्रिया 1-2 में किया गया कार्य $$W_1 = \frac{n}{n-1}(p_2v_2 - p_1v_1) = \frac{n}{n-1}(RT_2 - RT_1)$$ हम जानते हैं $$PV = nRT$$ इस प्रकार प्रक्रिया 3-4 में $$W_2 = \frac{n}{n-1} (P_3 V_3 - P_4 V_4) = \frac{n}{n-1} (RT_3 - RT_4)$$ प्रति चक्र किया गया नैट कार्य $$W_1 - W_2 = \frac{n}{n-1} (RT_2 - RT_1) - \frac{n}{n-1} (RT_3 - RT_4)$$ $$= \frac{n}{n-1} R [(T_2 - T_1) - (T_3 - T_4)]$$ $$COP = \frac{C_p (T_1 - T_4)}{\frac{n}{n-1} R [(T_2 - T_1) - (T_3 - T_4)]}$$