
Inheritance in Java OOPs with Example

What is Inheritance?

Inheritance is a mechanism in which one class acquires the property of
another class. For example, a child inherits the traits of his/her parents.
With inheritance, we can reuse the fields and methods of the existing class.
Hence, inheritance facilitates Reusability and is an important concept of
OOPs.

In this tutorial, you will learn-

Types of Inheritance

Inheritance in Java

Java Inheritance Example

Super Keyword

Learn Inheritance in OOP’s with Example

Types of Inheritance

There are Various types of inheritance in Java:

Single Inheritance:

In Single Inheritance one class extends another class (one class only).

https://www.guru99.com/java-class-inheritance.html

Single Inheritance

In above diagram, Class B extends only Class A. Class A is a super class and
Class B is a Sub-class.

Multiple Inheritance:

In Multiple Inheritance, one class extending more than one class. Java does
not support multiple inheritance.

Types of Inheritance

Multiple Inheritance

As per above diagram, Class C extends Class A and Class B both.

Multilevel Inheritance:

In Multilevel Inheritance, one class can inherit from a derived class. Hence,
the derived class becomes the base class for the new class.

Multilevel Inheritance

As per shown in diagram Class C is subclass of B and B is a of subclass Class
A.

Hierarchical Inheritance:

In Hierarchical Inheritance, one class is inherited by many sub classes.

Hierarchical Inheritance

As per above example, Class B, C, and D inherit the same class A.

Hybrid Inheritance:

Hybrid inheritance is a combination of Single and Multiple inheritance.

Hybrid Inheritance

As per above example, all the public and protected members of Class A are
inherited into Class D, first via Class B and secondly via Class C.

Note: Java doesn't support hybrid/Multiple inheritence

Inheritance In Java

JAVA INHERITANCE is a mechanism in which one class acquires the
property of another class. In Java, when an "Is-A" relationship exists
between two classes, we use Inheritance. The parent class is called a super
class and the inherited class is called a subclass. The keyword extends is
used by the sub class to inherit the features of super class.

Inheritance is important since it leads to the reusability of code.

Java Inheritance Syntax:

class subClass extends superClass
{
 //methods and fields
}

Java Inheritance Example

http://www.guru99.com/images/uploads/2012/07/java-inheritance.jpg

class Doctor {
 void Doctor_Details() {
 System.out.println("Doctor Details...");
 }
}

class Surgeon extends Doctor {
 void Surgeon_Details() {
 System.out.println("Surgen Detail...");
 }
}

public class Hospital {
 public static void main(String args[]) {
 Surgeon s = new Surgeon();
 s.Doctor_Details();
 s.Surgeon_Details();
 }
}

Super Keyword

http://www.guru99.com/images/uploads/2012/07/java-inheritance.jpg

The super keyword is similar to "this" keyword.

The keyword super can be used to access any data member or methods of
the parent class.

Super keyword can be used at variable, method and constructor level.

Syntax:

super.<method-name>();

Learn Inheritance in OOP’s with Example

Consider the same banking application from the previous example.

We are supposed to open two different account types, one for saving and
another for checking (also known as current).

Let's compare and study how we can approach coding from a structured
and object-oriented programming perspective. Structural approach: In
structured programming, we will create two functions –

1. One to withdraw

2. And the other for deposit action.

Since the working of these functions remains same across the accounts.

https://www.guru99.com/java-oops-concept.html
http://www.guru99.com/images/java/052016_0651_JavaInherit1.jpg

OOP's approach: While using the OOPs programming approach. We would
create two classes.

Each having implementation of the deposit and withdraw functions.

This will redundant extra work.

http://www.guru99.com/images/java/052016_0651_JavaInherit2.jpg

Change Request in Software

Now there is a change in the requirement specification for something that
is so common in the software industry. You are supposed to add
functionality privileged Banking Account with Overdraft Facility. For a
background, overdraft is a facility where you can withdraw an amount
more than available the balance in your account.

http://www.guru99.com/images/java/052016_0651_JavaInherit3.jpg

Structural approach: Using functional approach, I have to modify my
withdraw function, which is already tested and baselined. And add a
method like below will take care of new requirements.

http://www.guru99.com/images/java/052016_0651_JavaInherit4.jpg

OOP's approach: Using OOP's approach, you just need to write a new class
with unique implementation of withdraw function. We never touched the
tested piece of code.

http://www.guru99.com/images/java/052016_0651_JavaInherit5.jpg

Another Change Request

What if the requirement changes further? Like to add credit card account
with its own unique requirement of deposits.

http://www.guru99.com/images/java/052016_0651_JavaInherit6.jpg

Structural approach: Using structural approach you have to change tested
piece of deposit code again.

OOP's approach: But using object-oriented approach, you will just create a
new class with its unique implementation of deposit method (highlighted
red in the image below).

http://www.guru99.com/images/java/052016_0651_JavaInherit7.jpg
http://www.guru99.com/images/java/052016_0651_JavaInherit8.jpg

So even though the structural programming seems like an easy approach
initially, OOP's wins in a long term.

Advantage of Inheritance in OOPs

But one may argue that across all classes, you have a repeated pieces of
code.

To overcome this, you create a parent class, say "account" and implement
the same function of deposit and withdraw. And make child classes
inherited "account" class. So that they will have access to withdraw and
deposit functions in account class.

The functions are not required to be implemented individually. This is
Inheritance in java. .

http://www.guru99.com/images/java/052016_0651_JavaInherit9.jpg

Prev
Report a Bug

Next

YOU MIGHT LIKE:

JavaScript

http://www.guru99.com/images/java/052016_0651_JavaInherit10.jpg
http://www.guru99.com/images/java/052016_0651_JavaInherit11.jpg
http://www.guru99.com/java-stack-heap.html
javascript:void(window.open('https://form.jotform.me/72391811797466', 'blank', 'scrollbars=yes, toolbar=no, width=700, height=700'))
http://www.guru99.com/java-inheritance-polymorphism.html

You can use JavaScript code in two ways. You can either include the
JavaScript code internally within...

Java Tutorials

What is Command Line Argument in Java? Command Line Argument in
Java is the information that is...

Java Tutorials

What is JSON? JSON is an abbreviation for Javascript Object Notation,
which is a form of data that...

Java Tutorials

Classes and Objects in Java are the fundamental components of OOP's.
Often there is a confusion...

Java Tutorials

Here are Java Collections Interview Questions for fresher as well as
experienced candidates to get...

Java Tutorials

What is Java? Java was released by Sun Microsystem in 1995. It was
developed by James Gosling. It is a...

