Decision Making in Java (if, if-else, switch, break,
continue, jump) - GeeksforGeeks

https://www.geeksforgeeks.org/decision-making-javaif-else-switch-break-continue-jump/

Decision Making in Java (if, if-else, switch, break, continue, jump)

 Difficulty Level : Easy
o Last Updated : 22 Nov, 2019

Decision Making in programming is similar to decision making in real life.
In programming also we face some situations where we want a certain
block of code to be executed when some condition is fulfilled.

A programming language uses control statements to control the flow of
execution of program based on certain conditions. These are used to cause
the flow of execution to advance and branch based on changes to the state
of a program.

Java’s Selection statements:

o if

o if-else

e nested-if

o if-else-if

e switch-case

 jump - break, continue, return

These statements allow you to control the flow of your program’s
execution based upon conditions known only during run time.

o if: if statement is the most simple decision making statement. It is used
to decide whether a certain statement or block of statements will be
executed or not i.e if a certain condition is true then a block of statement
is executed otherwise not.

Syntax:

https://www.geeksforgeeks.org/easy/
https://www.geeksforgeeks.org/java-if-statement-with-examples/

if(condition)

{

// Statements to execute if
// condition is true

}

Here, condition after evaluation will be either true or false. if statement
accepts boolean values - if the value is true then it will execute the block
of statements under it.

If we do not provide the curly braces {‘ and ‘}’ after if(condition) then
by default if statement will consider the immediate one statement to be
inside its block. For example,

if(condition)
statement1;
statement2;

// Here if the condition is true, if block
// will consider only statement1 to be inside
// its block.

Flow chart:

Test Expression

Body of if

Statement just
below if

Example:

class IfDemo
{

false

public static void main(String args[1)

{
inti = 10;
if (i > 15)

System.out.println("10 is less than 15");

System.out.println("I am Not in if");

}

}
Output:

I am Not in if

if-else: The if statement alone tells us that if a condition is true it will
execute a block of statements and if the condition is false it won’t. But
what if we want to do something else if the condition is false. Here
comes the else statement. We can use the else statement with if
statement to execute a block of code when the condition is false.
Syntax:

if (condition)

{
// Executes this block if
// condition is true

}

else

{

// Executes this block if
// condition is false

https://www.geeksforgeeks.org/java-if-else-statement-with-examples/

Test Expression

false

Body of i

Body of else

Statement just
below if

Example:

class IfElseDemo

{
public static void main(String args[])
{
inti = 10 ;
if (i < 15)

System.out.println("i is smaller than 15");
else

System.out.println("i is greater than 15");

Output:

i is smaller than 15

nested-if: A nested if is an if statement that is the target of another if or
else. Nested if statements means an if statement inside an if statement.
Yes, java allows us to nest if statements within if statements. i.e, we can
place an if statement inside another if statement.

Syntax:
if (condition1)
{
// Executes when condition1 is true
if (condition2)
{
// Executes when condition2 is true
¥
¥

true Nested Test
Expression

Test Expression

Body of else

Statement just

Body of Body of
nested if nested else

W Y

below if

Example:

class NestedIfDemo

{
public static void main(String args[])
{
inti = 10 ;
if (1 == 10)
{
if (1 < 15)
System.out.println("i is
if (1 < 12)
System.out.println("i is
else
System.out.println("i is
}
¥
}
Output:

i is smaller than 15
i is smaller than 12 too

if-else-if ladder: Here, a user can decide among multiple options.The if
statements are executed from the top down. As soon as one of the
conditions controlling the if is true, the statement associated with that if
is executed, and the rest of the ladder is bypassed. If none of the
conditions is true, then the final else statement will be executed.

if (condition)
statement;
else if (condition)
statement;

else
statement;

smaller than 15");

smaller than 12 too");

greater than 15");

https://www.geeksforgeeks.org/java-if-else-if-ladder-with-examples/

Example:

class ifelseifDemo
{

public static void main(String args[1)

{
inti = 20 ;

if (1 == 10)

System.out.println("i is 10");
elseif (i == 15)
System.out.println("i is 15");
else if (i == 20)
System.out.println("i is 20");
else
System.out.println("i is not present");

Output:
i is 20

switch-case The switch statement is a multiway branch statement. It
provides an easy way to dispatch execution to different parts of code
based on the value of the expression.

Syntax:

switch (expression)

{

case valuel:
statement1;
break;

case value2:
statement2;
break;

case valueN:
statementN;
break;

default:
statementDefault;

o Expression can be of type byte, short, int char or an enumeration.
Beginning with JDK?7, expression can also be of type String.

o Dulplicate case values are not allowed.
o The default statement is optional.

o The break statement is used inside the switch to terminate a
statement sequence.

https://www.geeksforgeeks.org/switch-statement-in-java/

o The break statement is optional. If omitted, execution will continue
on into the next case.

Stalerment n

Defaul
Stetement

Example:

class SwitchCaseDemo
{

public static void main(String args[])

{

inti =9;

switch (1)

{

case 0 :
System.out.println("i is zero.");
break ;

case 1 :
System.out.println("i is one.");
break ;

case 2 :
System.out.println("i is two.");
break ;

default :
System.out.println("i is greater than 2.");

Output:

i is greater than 2.

e jump: Java supports three jump statement: break, continue and
return. These three statements transfer control to other part of the
program.

1. Break: In Java, break is majorly used for:
= Terminate a sequence in a switch statement (discussed above).
= To exit a loop.

= Used as a “civilized” form of goto.
Using break to exit a Loop

Using break, we can force immediate termination of a loop,
bypassing the conditional expression and any remaining code in the
body of the loop.

Note: Break, when used inside a set of nested loops, will only break
out of the innermost loop.

https://www.geeksforgeeks.org/break-statement-in-java/

Enter loop

Test Expression
of loop

yes Statement just

below loop

Remaining body of
the loop

Example:

class BreakLoopDemo

{
public static void main(String args[])
{
for (inti =0 ; i < 10 ; i++)
{
if (1 ==5)
break ;
System.out.println("i: "+ 1i);
i
System.out.println("Loop complete.");
by
}
Output:
i: 0
i1
i: 2
i: 3

i: 4
Loop complete.

Using break as a Form of Goto

Java does not have a goto statement because it provides a way to
branch in an arbitrary and unstructured manner. Java uses label. A
Label is use to identifies a block of code.

Syntax:

label:
{

statement1;
statement2;
statement3;

by
Now, break statement can be use to jump out of target block.
Note: You cannot break to any label which is not defined for an

enclosing block.
Syntax:

break label:

Example:

class BreakLabelDemo
{

public static void main(String args[])

{
booleant = true ;

first:

second:

{
third:

{

System.out.println("Before the break statement");

if (t)
break second;
System.out.println("This won't execute.");

by

System.out.println("This won't execute.");

System.out.println("This is after second block.");

Output:

Before the break.
This is after second block.

2. Continue: Sometimes it is useful to force an early iteration of a loop.
That is, you might want to continue running the loop but stop
processing the remainder of the code in its body for this particular
iteration. This is, in effect, a goto just past the body of the loop, to the
loop’s end. The continue statement performs such an action.

Enter loop

Test Expression false

of loop

Statement just

continue
below loop

Remaining body of
the loop

Example:

class ContinueDemo

{
public static void main(String args[])
{
for (inti =0; i < 10; i++)
{
if (i%2==0)
continue ;
System.out.print(i + " ");
b
¥
}
Output:

13579

3. Return:The return statement is used to explicitly return from a
method. That is, it causes a program control to transfer back to the
caller of the method.

Example:

class Return
{

public static void main(String args[])

{

booleant = true ;
System.out.println("Before the return.");

if (t)
return ;

System.out.println("This won't execute.");

Output:

Before the return.

This article is contributed by Anuj Chauhan and Harsh Aggarwal. If you
like GeeksforGeeks and would like to contribute, you can also write an
article using contribute.geeksforgeeks.org or mail your article to
contribute@geeksforgeeks.org. See your article appearing on the
GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share
more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important
Java Foundation and Collections concepts with the Fundamentals of Java
and Java Collections Course at a student-friendly price and become
industry ready. To complete your preparation from learning a language to

https://www.geeksforgeeks.org/return-keyword-java/
https://www.facebook.com/anuj0503
http://www.contribute.geeksforgeeks.org/
https://practice.geeksforgeeks.org/courses/Java-Foundation?vC=1
https://practice.geeksforgeeks.org/courses/Java-Collections?vC=1

DS Algo and many more, please refer Complete Interview Preparation
Course.

My Personal Notes arrow_drop_up

Add your personal
notes here! (max 5000

https://practice.geeksforgeeks.org/courses/complete-interview-preparation?utm_source=GeeksforGeeks&utm_medium=Text&utm_campaign=GFG_Article_Bottom_Text_CIP

