

13 Multimedia User Interfaces Contents

- 13.1 Overview
- 13.2 General Design Issues
- 13.3 Architectural Issues
- 13.4 Information Characteristics for Presentation
- 13.5 Effective Human-Computer Interaction
- 13.6 Extension through Video and Audio
 - Video at the User Interface
 - Audio at the User Interface
- 13.7 User-friendliness
- 13.8 Future Trends

13.1 Overview

Multimedia User Interfaces:

- computer interfaces that communicate with users using multiple media
- media determine how and how well human-computer interaction occurs (decisive for user acceptance)

General Design Issues:

"Appropriateness Principle" concerning the surface presentation of information

Architectural Issues:

- Information Characteristics for Presentation
- Effective Human-Computer Interaction
- Video and Audio at the User Interface
- User-friendliness of Multimedia User Interfaces (primary goal!)
 - → Development goes towards new user interfaces:
 - 1. Virtual Environments
 - 2. Ubiquitous Computing

13.1 Overview

Media determine how and how well human-computer interaction occurs

- Text interfaces
- Graphical user interfaces/window systems (X-Window System, MS-Windows, etc.)
- WIMP interfaces (Windows, Icons, Menus, Pointing)

Open problems:

- Computer interaction still neither natural nor effective (speech recognition, audio textbooks, etc.)
- Specification of object movement (e.g. motion video for multimedia tennis course instead of text and grahics images)
 - → Development goes towards new user interface devices:
 - 1. Virtual Reality
 - 2. Ubiquitous computing

13.2 General Design Issues

Main emphasis in design of Multimedia User Interfaces (MUI) is multimedia presentation. The general issues to be considered are:

- To determine the appropriate information content to be communicated.
- To represent the essential characteristics of the information.
- To represent the communication intent.
- To choose the proper media for information presentation.
- To coordinate different media and assembling techniques within a presentation.
- To provide interactive exploration of the information presented.

→Appropriatness Principle

"The surface presentation used by the artifact should allow the person to work with exactly the information acceptable to the task: neither more nor less"

(Norman, "Cognitive Artifacts", 1991)

13.3 Architectural Issues [RH93]

13.4 Information Characteristics for Presentation

Types (ordering information)

- coordinates vs. amount (specify points in time, space or other domains)
- intervals vs. ratio (suggests the type of comparisons meaningful among elements of coordinate and amount data types)

Relational Structures

- functional dependencies (e.g. bar chart)
- non-functional dependencies (e.g. entry in a relational database)

Multi-domain Relations

- multiple attributes of a single object set (e.g. position. colors, ...)
- multiple object sets (e.g. graphical symbols on a map)
- multiple displays (e.g. multiple windows)

Large Data Sets

 numerous attributes of collections of heterogeneous objects (e.g. presentation of semantic networks)

13.5 Effective Human-Computer Interaction

For presentation design the following topics must be considered:

- content selection
- media selection
- coordination

One of the most important issues regarding MUI is user-friendliness. Therefore during the design of a MUI the following main issues must be considered:

- context
- linkage to the world
- evaluation of the interface
- interactive capabilities
- separability

13.6 Extension through Video and Audio

Time as a new presentation dimension in a User Interfaces:

- "Illusion of continuity" created by presentation of a "sequence of static elements".

13.6 Extension through Video and Audio Video at the User Interface

Implemented through a continuous sequence of individual images (video frames at frame rate of 15 fps and higher)

Hardware, software and heterogeneous \geq 30 fps solutions available for coding and decoding of the frames

Example: Remote Camera Control Application

- Application Specification
- Camera is remotely controlled by a computer. The camera receives control
 information from the computer and sends the video data back.
- User Interface
- Camera control through:
 - keyboard
 - buttons in window system
 - scroll bars
 - mouse, joystick, etc.

13.6 Extension through Video and Audio Video at the User Interface

Direct Manipulation of the Video Window:

Absolute Positioning:

User positions cursor on an object + double mouse-click

Result: Clicked object becomes new center of window

Relative Positioning:

Camera moves toward the pointed object; different moving speeds are possible

13.6 Extension through Video and Audio Audio at the User Interface

Speech Analysis

- speaker-dependent (training of the system needed, more words recognized)
- speaker-independent (no training needed, limited set of words recognized)

Dimension of Space

- monophony (all audio sources have the same spatial location)
- stereophony (allows bilateral listening to hear lower intensity sounds)
- quadrophony → concept of two or more separate channels

Audio Windows

- audio windows as the graphical representation of audio locations
- one audio window per audio source
- changing the position of the audio window on the desktop changes the location of the audio source

13.7 User-friendliness

User-friendliness is the main property of a good user interface and requirements of applications differ. Generally applicable criteria are:

- easy to learn instructions
- easy to remember instructions
- context-sensitive help functions
- effective instructions
 - present logically connected functions together
 - use graphics instead of text
 - quick activation of actions
 - useful for both professional and sporadic users
- aesthetics
- effective implementation support
- entry elements
- meaningful location of functions
- presentation
- dialogue Boxes

- alphabetically ordered
- or logically grouped
- additional design criteria, e.g. show progress in time intensive tasks
- design-specific criteria

13.8 Future Trends

1. Virtual Environments:

- Computer-based systems that are 3D rather than 2D
- Interactive as opposed to passive
- Use one or more devices that attempt to provide a sense of spatial "presence" to the user (visual, auditory, or tactile)
- Devices include
 - head-tracked displays and stereo displays (both visual and audio)
 - hand trackers
 - haptic displays (address the user's sense of touch and temperature)
- Systems can not only involve synthesized material (e.g. computer graphics) and Recorded material (e.g. video), but the surrounding real world itself (augmented reality)

13.8 Future Trends

2. Ubiquitous computing:

- Environment in which a large number of computers will be seamlessly integrated into our immediate surroundings, connected by wireless networks
- Users no longer aware of the computers presence (analogy to electric motor)
- People as well as computers are tracked as they move about
- Computers adapt transparently to the preference of the person using it
- Main components
 - inexpensive, low-power, mobile computers and displays
 - software infrastructure for ubiquitous applications
 - high-capacity wireless networks that tie everything together