
C - Pointers

Advertisements

 Previous Page

Next Page

Pointers in C are easy and fun to learn. Some C programming tasks are performed more easily with
pointers, and other tasks, such as dynamic memory allocation, cannot be performed without using
pointers. So it becomes necessary to learn pointers to become a perfect C programmer. Let's start
learning them in simple and easy steps.

As you know, every variable is a memory location and every memory location has its address defined
which can be accessed using ampersand (&) operator, which denotes an address in memory.
Consider the following example, which prints the address of the variables defined −

Live Demo

#include <stdio.h>

int main () {

 int var1;

 char var2[10];

 printf("Address of var1 variable: %x\n", &var1);

 printf("Address of var2 variable: %x\n", &var2);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Address of var1 variable: bff5a400

Address of var2 variable: bff5a3f6

What are Pointers?

A pointer is a variable whose value is the address of another variable, i.e., direct address of the
memory location. Like any variable or constant, you must declare a pointer before using it to store
any variable address. The general form of a pointer variable declaration is −

type *var-name;

Here, type is the pointer's base type; it must be a valid C data type and var-name is the name of the
pointer variable. The asterisk * used to declare a pointer is the same asterisk used for multiplication.
However, in this statement the asterisk is being used to designate a variable as a pointer. Take a
look at some of the valid pointer declarations −

int *ip; /* pointer to an integer */

double *dp; /* pointer to a double */

float *fp; /* pointer to a float */

char *ch /* pointer to a character */

https://www.tutorialspoint.com/cprogramming/c_arrays.htm
https://www.tutorialspoint.com/cprogramming/c_strings.htm
http://tpcg.io/SxljuD

The actual data type of the value of all pointers, whether integer, float, character, or otherwise, is the
same, a long hexadecimal number that represents a memory address. The only difference between
pointers of different data types is the data type of the variable or constant that the pointer points to.

How to Use Pointers?

There are a few important operations, which we will do with the help of pointers very
frequently. (a) We define a pointer variable, (b) assign the address of a variable to a pointer
and (c) finally access the value at the address available in the pointer variable. This is done by using
unary operator * that returns the value of the variable located at the address specified by its operand.
The following example makes use of these operations −

Live Demo

#include <stdio.h>

int main () {

 int var = 20; /* actual variable declaration */

 int *ip; /* pointer variable declaration */

 ip = &var; /* store address of var in pointer variable*/

 printf("Address of var variable: %x\n", &var);

 /* address stored in pointer variable */

 printf("Address stored in ip variable: %x\n", ip);

 /* access the value using the pointer */

 printf("Value of *ip variable: %d\n", *ip);

 return 0;

}

When the above code is compiled and executed, it produces the following result −

Address of var variable: bffd8b3c

Address stored in ip variable: bffd8b3c

Value of *ip variable: 20

NULL Pointers

It is always a good practice to assign a NULL value to a pointer variable in case you do not have an
exact address to be assigned. This is done at the time of variable declaration. A pointer that is
assigned NULL is called a null pointer.

The NULL pointer is a constant with a value of zero defined in several standard libraries. Consider
the following program −

Live Demo

#include <stdio.h>

int main () {

 int *ptr = NULL;

 printf("The value of ptr is : %x\n", ptr);

http://tpcg.io/Lt9V7y
http://tpcg.io/xGfUyr

 return 0;

}

When the above code is compiled and executed, it produces the following result −

The value of ptr is 0

In most of the operating systems, programs are not permitted to access memory at address 0
because that memory is reserved by the operating system. However, the memory address 0 has
special significance; it signals that the pointer is not intended to point to an accessible memory
location. But by convention, if a pointer contains the null (zero) value, it is assumed to point to nothing.

To check for a null pointer, you can use an 'if' statement as follows −

if(ptr) /* succeeds if p is not null */

if(!ptr) /* succeeds if p is null */

Pointers in Detail

Pointers have many but easy concepts and they are very important to C programming. The following
important pointer concepts should be clear to any C programmer −

Sr.No. Concept & Description

1 Pointer arithmetic

There are four arithmetic

operators that can be used in

pointers: ++, --, +, -

2 Array of pointers

You can define arrays to

hold a number of pointers.

3 Pointer to pointer

C allows you to have pointer

on a pointer and so on.

4 Passing pointers to functions in

C

Passing an argument by

reference or by address

enable the passed argument

to be changed in the calling

https://www.tutorialspoint.com/cprogramming/c_pointer_arithmetic.htm
https://www.tutorialspoint.com/cprogramming/c_array_of_pointers.htm
https://www.tutorialspoint.com/cprogramming/c_pointer_to_pointer.htm
https://www.tutorialspoint.com/cprogramming/c_passing_pointers_to_functions.htm
https://www.tutorialspoint.com/cprogramming/c_passing_pointers_to_functions.htm

function by the called

function.

5 Return pointer from functions

in C

C allows a function to return

a pointer to the local

variable, static variable, and

dynamically allocated

memory as well.

https://www.tutorialspoint.com/cprogramming/c_return_pointer_from_functions.htm
https://www.tutorialspoint.com/cprogramming/c_return_pointer_from_functions.htm

	C - Pointers
	What are Pointers?
	How to Use Pointers?
	NULL Pointers
	Pointers in Detail

