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T−beams and L−beams 

Beams having effectively T-sections and L-sections (called T-beams and L-beams) are 

commonly encountered in beam-supported slab floor systems [Figs. 2.8]. In such situations, a 

portion of the slab acts integrally with the beam and bends in the longitudinal direction of the 

beam. This slab portion is called the flange of the T- or L-beam. The beam portion below the 

flange is often termed the web, although, technically, the web is the full rectangular portion of 

the beam other than the overhanging parts of the flange. Indeed, in shear calculations,  the 

web is interpreted in this manner. 

When the flange is relatively wide, the flexural compressive stress is not uniform over its 

width. The stress varies from a maximum in the web region to progressively lower values at 

points farther away from the web. In order to operate within the framework of the theory of 

flexure, which assumes a uniform stress distribution across the width of the section, it is 

necessary to define a reduced effective flange. 

The ‗effective width of flange‘ may be defined as the width of a hypothetical flange that 

resists in-plane compressive stresses of uniform magnitude equal to the peak stress in the 

original wide flange, such that the value of the resultant longitudinal compressive force is the 

same (Fig. 2.8). 

 

Figure 2.8 T-beams and L-beams in beam-supported floor slab systems 



The effective flange width is found to increase with increased span, increased web width and 

increased flange thickness. It also depends on the type of loading (concentrated, distributed, 

etc.) and the support conditions (simply supported, continuous, etc.). Approximate formulae 

for estimating the ‗effective width of flange‘ b (Cl. 23.1.2 of Code) are given as follows: 
f 

 

b    
l0 / 6  bw  6D f for T  Beam  (12) 

f 
l0 /12  bw 3Df for L  Beam 

 

where b
w 

is the breadth of the web, D
f 
is the thickness of the flange [Fig 2.8], and l0  is the 

―distance between points of zero moments in the beam‖ (which may be assumed as 0.7 times 

the effective span in continuous beams and frames). Obviously,  b  cannot extend beyond the 
f 

slab portion tributary to a beam,  i.e., the actual width of slab available. Hence, the calculated 

b  should  be restricted to a value that  does not  exceed  (s +s )/2 in the case of T−beams, and 
f 1 2 

s /2 + b /2 in the case of L−beams, where the spans s and s of the slab are as marked in Fig. 
1 w 1 2 

2.8. 
 

In some situations, isolated T−beams and L−beams are encountered, i.e., the slab is 

discontinuous at the sides, as in a footbridge or a ‗stringer beam‘ of a staircase. In such cases, 

the Code [Cl. 23.1.2(c)] recommends the use of the following formula to estimate the 

‗effective width of flange‘ b : 
f 

 
 l0  b for isolated T  Beams 
l0 / b  4 w

 

bf   0.5l (13) 
 0      b for isolated L  Beam 

l0 / b  4 w 

where b denotes the actual width of flange; evidently, the calculated value of b should not 
f 

exceed b. 
 

Analysis of Singly Reinforced Flanged Sections 
 

The procedure for analysing flanged beams at ultimate loads depends on whether the neutral 

axis is located in the flange region [Fig. 2.8(a)] or in the web region [Fig. 2.8(b)]. 

If the neutral axis lies within the flange (i.e., x
u 

≤ D
f 
), then as in the analysis at service 

loads all the concrete on the tension side of the neutral axis is assumed ineffective, and the T- 

section may be analysed as a rectangular section of width b
f 

and effective depth d [Fig. 

2.8(a)]. Accordingly, Eq. (7) and Eq. (9) are applicable with b replaced by b
f 
. 



If the neutral axis lies in the web region (i.e., x > D ), then the compressive stress is carried 
u f 

by the concrete in the flange and a portion of the web, as shown in Fig. 2.8(b). It is 

convenient to consider the contributions to the resultant  compressive force C , from the web 
u 

portion (b  × x ) and the flange portion (width b − b ) separately, and to sum up these effects. 
w u f w 

Estimating the compressive force C in the ‗web‘ and its moment  contribution M is easy, 
uw uw 

as the full stress block is operative: 

 

Cuw   0.361  fckbwxu 

Muw  Cuw(d  0.416xu ) 

 

 
(14) 

 
(15) 

 

 
 

Figure 2.9 Behaviour of flanged beam section at ultimate limit state 
 

However, estimating the compressive force C
uf 

in the flange is rendered difficult by the fact 

that the stress block for the flange portions may comprise a rectangular area plus a truncated 

parabolic area [Fig. 2.8(b)]. A general expression for the total area of the stress block 

operative in the flange, as well as an expression for the centroidal location of the stress block, 

is evidently not convenient to derive for such a case. However, when the stress block over the 

flange depth contains only a rectangular area (having a uniform stress 0.447 f
ck

), which 



 

occurs when 
3
 x  D , an expression for C and its moment contribution M can easily be 

7  
u f uf uf 

formulated. For the case, 1  xu / Df  7 / 3 , an equivalent rectangular stress block (of area 

0.447f y ) can be conceived, for convenience, with an equivalent depth y ≤ D , as shown in 
ck   f f f 

Fig.  2.8(c).  The  expression  for  y   given  in  the  Code  (Cl.  G  −  2.2.1)  is  necessarily  an 
f 

approximation, because it cannot satisfy the two conditions of ‗equivalence‘, in terms of area 

of stress block as well as centroidal location. A general expression for y  may be specified for 
f 

any x > D : 
u f 

 

y f 
0.15xu  0.65D f for1  xu / Df   7 / 3 

(16)
 

D f for Df  7 / 3 

The expressions for C and M are accordingly obtained as: 
uf uf 

 

Cuf 

Muf 

 0.447fck (bf 

 
 Cuf (d  yf 

 bw) y f 

 
/ 2) 

for xu  Df (17) 

 
(17a) 

The location of the neutral axis is fixed by the force equilibrium condition (with y expressed 
f 

in terms of x [Eq. 17]). 
u 

 

Cuf    Cuf   fst Ast (18) 

where f   = 0.87 f  for x  ≤ x . Where x  > x , the strain compatibility method has to be 
st y u u,max u u,max 

employed to determine x . 
u 

 

Substituting Eq. 14 and Eq. 17 in Eq. 18, and solving for x , 
u 

 

x  
fst Ast  0.447 fck (bf  bw) y f for x   D (19) 

u 
0.361 fckbw u f 

The final expression for the ultimate moment of resistance M is obtained as: 
uR 

 

MuR  Muw  Muf (20) 

 
 MuR  0.361fckbwxu (d  0.416xu )  0.447 fck (bf   bw) y f (d  y f  / 2) (21) 



 

Limiting Moment of Resistance 

The limiting moment of resistance M is obtained for the condition x  = x , where x 
u,lim u u,max u,max 

takes the values of 0.531d, 0.479d and 0.456d for Fe 250, Fe 415 and Fe 500 grades of tensile 

steel reinforcement. The condition x /D ≥7/3 in Eq. 4.69, for the typical case of Fe 415, 
u f 

works  out,  for  x  = x , as 0.479d / D 
u u,max 

 7 / 3 , i.e., Ddf≤0205.. The Code (Cl. G−2.2) 

suggests a simplified condition of 

condition x /D ≥ 7/3. 
u f 

d / Df  0.2 for all grades of steel — to represent the 

 

Eq. (21) and Eq. (16) take the following forms: 

Mu,lim  0.361 fckbwxu,max (d  0.416xu,max ) 

0.447 f (b    b  ) y  (d  y   / 2) for x  D (22) 
ck f w f f u,max f 

y f 
0.15xu,max  0.65D f for Df  / d  0.2 

(23)
 

D f for Df  / d  0.2 

The advantage of using Eq. (23) in lieu of the more exact Eq. (16) (with x  = x ) is that the 
u u,max 

estimation of y  is made somewhat simpler. Of course, for x ≤ D (i.e., neutral axis within 
f u,max f 

the flange), 
 

Mu,lim  0.361 fckbf xu,max (d  0.416xu,max ) for xu,max  Df (24) 

 
As mentioned earlier, when it is found by analysis of a given T-section that x > x , then 

u u,max 

the strain compatibility method has to be applied. As an approximate and conservative 

estimate, M may be taken as M , given by Eq. (23) / (24). From the point of view of 
uR u,lim 

design (to be discussed in Chapter 5), M provides a measure of the ultimate moment 
u,lim 

capacity that can be expected from a T-section of given proportions. If the section has to be 

designed for a factored moment M > M , then this calls for the provision of compression 
u u,lim 

reinforcement in addition to extra tension reinforcement. 

 

 

Design Procedure 
 

In the case of a continuous flanged beam, the negative moment at the face of the support 

generally exceeds the maximum positive moment (at or near the midspan), and hence governs 

the proportioning of the beam cross-section. In such cases of negative moment, if the slab is 

f 



located on top of the beam (as is usually the case), the flange is under flexural tension and 

hence the concrete in the flange is rendered ineffective. The beam section at the support is 

therefore to be designed as a rectangular section for the factored negative moment. Towards 

the midspan of the beam, however, the beam behaves as a proper flanged beam (with the 

flange under flexural compression). As the width of the web b  and the overall depth D are 
w 

already fixed from design considerations at the support, all that remains to be determined is 

the area of reinforcing steel; the effective width of flange is determined as suggested by the 

Code . 

The determination of the actual reinforcement in a flanged beam depends on the location of 

the neutral axis x , which, of course, should be limited to x . If M exceedsu M for a 
u u,max 

 
u,lim 

singly reinforced flange section, the depth of the section should be suitably increased; 

otherwise, a doubly reinforced section is to be designed. 

Neutral Axis within Flange (x 
u 

≤ D ): 
f 

This is, by far, the most common situation encountered in building design. Because of the  

very large compressive concrete area contributed by the flange in T-beam and L-beams of 

usual proportions, the neutral axis lies within the flange (x ≤ D ), whereby the section 
u f 

behaves like a rectangular section having width b and effective depth d. 
f 

A simple way of first checking x ≤ D is by verifying 
u f 

Mu  (MuR )xu Df 
where (MuR )xu Df

 

 

is the limiting ultimate moment of resistance for the condition xu  Df and is given by 

 
(MuR )xu Df    

 0.361 fckbf Df (d  0.416Df ) (25) 

It may be noted that the above equation is meaning only if xu,max  Df . In rare situations 

involving very thick flanges and relatively shallow beams, xu,max may be less than Df. in such 

cases, Mu,lim  is obtained by substituting x in place of D in Eq. (25). 
u,max f 

Neutral Axis within Web (x > D ): 
u f 

When  Mu   (MuR )xu Df    
, it follows that   xu  Df . The accurate determination of xu can be 

 

laborious. The contributions of the compressive forces Cuw 

may be accounted for separately as follows: 

and Cuf in the ‗web‘ and ‗flange‘ 

MuR  Cuw(d  0.416xu )  Cuf (d  y f  / 2) (26) 



uR x 7D /3 

Cuw  0.361 fckbwxu (27) 

Cuf    0.447fck (bf  bw) y f (28) 

and the equivalent flange thickness yf is equal to or less than Df depending on whether xu 

exceeds 7Df/3 or not. 

For x ≥ 7D /3, the value of the ultimate moment of resistance (M ) 
u,max f u f 

corresponding to   xu  7Df  / 3and   y f  Df may be first computed. If the factored moment 

Mu  (MuR )xu
 

 
7Df /3 , it follows that xu  7Df / 3 and y f   Df . Otherwise, 

Df  xu  7Df / 3 for (MuR )x D 
 Mu  (MuR )x 7D /3 and 

u f u f 

y f  0.15xu  0.65Df 

 
 

(29) 

Inserting the  appropriate value  —  Df  or the expression for  yf   in  Eq.  (29),  in Eq. (26), the 

resulting quadratic equation (in terms of the unknown xu ) can be solved to yield the correct 

value of  xu.. Corresponding to this value of x   the values of C and C   can be computed [Eq. 
u, uw uf 

(27) , (28)] and the required A obtained by solving the force equilibriumequation. 
st 

Tu  0.87 f f Ast  Cuw  Cuf 

 ( A )  
Cuw  Cuf (30) 

st required 0.87 f y
 

Numerical Problem 

 

Q-6A continuous T-beam has the cross-sectional dimensions shown in figure below. The web 

dimensions have been determined from the consideration of negative moment at support and 

shear strength requirements. The span is 10 m and the design moment at midspan under 

factored loads is 800 kNm. Determine the flexural reinforcement requirement at midspan. 

Consider Fe 415 steel. Assume that the beam is subjected to moderate exposure conditions. 

Solution 

Determining approximate Ast 

Effective flange width bf 

Actual flange width provided =1500mm; Df=100 mm; bw=300mm 

 
Maximum width permitted =(0.7x10000)/6 + 300 + (6x100) =2067 mm >1500 mm 

Therefore, bf =1500 mm 

Assuming d=650 mm and a lever arm z equal to larger of 0.9d = 585 mm 

And d- Df/2 = 600mm i.e. z=600 mm 

800x106 2
 

( Ast )required  
0.87x415x600 

 3693mm
 



 
 

 
 

 

Figure: Reinforcement of T-beam of Example Problem 

Determining actual Ast 

x = 0.479 × 618 =296 mm 
u,max 

As xu,max>Df =100mm, the condition xu=Df 

satisfies 

• Assuming M 25 concrete, f = 25 MPa 
ck 

xu  xu,max 

(MuR )xu Df 
 0.362 × 25 × 1500 × 100 × (618 – 0.416 × 100) 

6 

= 782.5 × 10 Nmm < M 
u 

⇒ x > D and M = C (d – 0.416 x ) + C 

= 800 kNm 

(d – yf/2) 
u f u uw u uf 

where C = 0.362f   b = 0.362 × 25 × 300x = (2715x )u N 
uw ck   w u u 

and C = 0.447f (b – b )y = 0.447 × 25 × (1500 – 300)y = (13410yf) 
uf ck f w    f f 

Considering x
u 
= 7D

f 
/3 = 233 mm ( < x

u,max 
= 296 mm), y

f 
= D

f 
= 100 mm 



u f 
⇒ (MuR )x 7D /3  (2715 × 233)(618 – 0.416 × 233) + (13410x100)x(618-100/2) 

 
=1091.3x106 Nmm >Mu = 800 KNm 

 

 
Evidently, D  x  

7 
D 

 
 

 
, for which y =0.15x +o.65D 

f u 
3 

f f u f 

C = 13410(0.15x.65 × 100) = (2011.5x + 871650) N 
uf u 

M = 800 × 106  = (2715x )(618 – 0.416x ) 
u u u 

+ (2011.5xu+871650)x[618-(0.15xu+65)/2] 
= -1280.3x 2 + 2790229.5 x + 510.35×106 

u 
u

 

Solving this quadratic equation, 

x  = 109.3 mm < x = 296 m 
u u,max 

⇒ y = 0.15x + 65 = 81.4 mm 
f u 

Applying T  = 0.87f A  = C +Cuf 

u y   st uw 
 

( A )  
(2715x109.3)  (13410x81.4) 

 3845 mm
2 

st required 0.87x415 

 
The reinforcement (5-32Φ; Ast=4020 mm2, based on appropriate estimate of Ast [Fig.] is 

evidently adequate and appropriate. 
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